Liquid Properties as a Function of Temperature | Vapor | ||||||||||
t [0] | r [1] | n[2] | n[2] | m [3] | m[3] | Cp [4] | k [5] | Prandtl [6] | b [7] | s [8] | Pv [9] |
°C | kg m-3 | cSt | m2 s-1 | kg m-1 s-1 | cPoise | J kg-1 C-1 | W m-1 C-1 | C-1 | N m-1 | Pa | |
-30 | 1912 | 2.692 | 2.69E-06 | 5.15E-03 | 5.15 | 967 | 0.067 | 73.86 | 0.00128 | 17.97 | 193 |
-25 | 1899 | 2.269 | 2.27E-06 | 4.31E-03 | 4.31 | 975 | 0.067 | 62.71 | 0.00129 | 17.53 | 279 |
-20 | 1887 | 1.942 | 1.94E-06 | 3.66E-03 | 3.66 | 983 | 0.067 | 54.07 | 0.00130 | 17.09 | 398 |
-15 | 1875 | 1.683 | 1.68E-06 | 3.16E-03 | 3.16 | 991 | 0.066 | 47.23 | 0.00131 | 16.65 | 559 |
-10 | 1863 | 1.476 | 1.48E-06 | 2.75E-03 | 2.75 | 998 | 0.066 | 41.72 | 0.00132 | 16.22 | 775 |
-5 | 1850 | 1.307 | 1.31E-06 | 2.42E-03 | 2.42 | 1006 | 0.065 | 37.19 | 0.00132 | 15.78 | 1061 |
0 | 1838 | 1.166 | 1.17E-06 | 2.14E-03 | 2.14 | 1014 | 0.065 | 33.43 | 0.00133 | 15.35 | 1437 |
5 | 1826 | 1.048 | 1.05E-06 | 1.91E-03 | 1.91 | 1022 | 0.065 | 30.25 | 0.00134 | 14.92 | 1925 |
10 | 1814 | 0.947 | 0.95E-06 | 1.72E-03 | 1.72 | 1030 | 0.064 | 27.55 | 0.00135 | 14.49 | 2551 |
15 | 1801 | 0.861 | 0.86E-06 | 1.55E-03 | 1.55 | 1037 | 0.064 | 25.21 | 0.00136 | 14.07 | 3349 |
20 | 1789 | 0.786 | 0.79E-06 | 1.41E-03 | 1.41 | 1045 | 0.063 | 23.18 | 0.00137 | 13.65 | 4356 |
25 | 1777 | 0.721 | 0.72E-06 | 1.28E-03 | 1.28 | 1053 | 0.063 | 21.41 | 0.00138 | 13.23 | 5615 |
30 | 1765 | 0.664 | 0.66E-06 | 1.17E-03 | 1.17 | 1061 | 0.063 | 19.84 | 0.00139 | 12.81 | 7178 |
Heat Transfer Performance, Liquid
Forced convection heat transfer performance [10]; liquid only FOM: Figure of Merit | Natural convection heat transfer performance [11]; liquid
only
FOM: Figure of Merit |
|||||
t [0] | Turbulent external flow;
FOM = r0.8 k0.67 Cp0.33 m-0.47 h = FOM 0.036 V0.8 L-0.2 |
Turbulent internal flow;
FOM = r0.8 k0.6 Cp0.4 m-0.4 h = FOM 0.023 V0.8 L-0.2 |
Laminar external flow;
FOM = r0.5 k0.67 Cp0.33 m-0.17 h = FOM 0.664 V0.5 L-0.5 |
Laminar internal flow;
FOM = k h = FOM Const D-1 |
Laminar flow;
FOM = b0.25 r0.5 k0.75 Cp0.25 m-0.25 h = FOM k L-1 |
Turbulent flow;
FOM = b0.33 r0.66 k0.66 Cp0.33 m-0.33 h = FOM k L-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Footnotes
[0] t, units of degrees C
[1] Based on ASTM standard D-341 correlations (original viscosity in
cSt)
[2] Based on kinematic viscosity from ASTM D-341 and density
[3] Based on linear relationship for r vs t: r = A - B t
[4] Conversion: 1 cP = 10-6 (m2 s-1)
[5] Based on linear relationship for Cp vs t: Cp = A - B t
[6] Based on linear relationship for k vs t: k = A - B t
[7] Prandtl = Cp m k-1
[8] b, coefficient of volumetric expansion: (dr/dt)/r.
[9] Based on relationship between s and T: s = A (1-Tr)B; from McLure
et al, J Chem Soc, Faraday Transactions, 1, 1982, 78, 2251 - 2257.
[10] Based on linear relationship between log (PV) vs T-1: log (torr)
= A - B/T; 1 torr = 133.3 Pa
[11] Based on Mouromtseff number; Saylor et. al., IEEE Transactions
on Comp, Hyb, and Mfg Tech, Vol 11, No 4, Dec 1988