### A) Convergence to a common evaporative fluid for the SCT and Pixels

[Greg Hallewell & Vic Vacek]

### and

### B) Compressor Studies for fluorocarbon vapors.

[Pierre Bonneau & Vic Vacek]

Presented by

Vic Vacek



| Basic prop                               | Added custom mixtures<br>until September 99 |                 |                      |                                 |                                 |
|------------------------------------------|---------------------------------------------|-----------------|----------------------|---------------------------------|---------------------------------|
| Fluorinert                               | C3F8                                        | C4F10           | CF3I                 | Custom Mix 3_7                  | Custom Mix 5_5                  |
| Name                                     | octafluoropropane                           | decafluorobutan | trifluoroiodomethane | C3F8[30%mass]<br>C4F10[70%mass] | C3F8[50%mass]<br>C4F10[50%mass] |
| Molar mass                               | 188.2                                       | 238.03          | 195.91               | 220.4                           | 210.1                           |
| Triple point<br>temperature [C]          | -160.15                                     | -84.15          | -153.15              | -                               |                                 |
| Boiling point<br>temperature [C]         | -36.6                                       | -2.09           | -22                  | Pseudo-critical<br>Properties:  | Pseudo-critical<br>Properties:  |
| Critical<br>temperature [C]              | 71.87                                       | 113.18          | 122.22               | 98.65                           | 90.1                            |
| Critical pressure<br>[bar]               | 26.8                                        | 23.23           | 38.82                | 25.24                           | 25.92                           |
| Critical density<br>[kg/m <sup>3</sup> ] | 628                                         | 599.8           | 874                  | 608                             | 613.6                           |
| Accentric factor<br>[-]                  | 0.325                                       | 0.374           | 0.1796               | -                               | Custom Mix 7_3                  |
| Dipole at NBP<br>[debye]                 | 0.014                                       | 0               | 0.92                 | -                               | C3F8[70%mass]<br>C4F10[30%mass] |
| Range of<br>applicability                |                                             |                 |                      |                                 | Molar mass = 200.7              |
| Minimal<br>temperature [C]               | -160.2                                      | -84.2           | -93.2                |                                 | T <sub>c</sub> = 82.32          |
| Maximal<br>temperature [C]               | 226.9                                       | 226.9           | 146.9                |                                 | P <sub>c</sub> = 26.18          |
| Maximal pressure<br>[bar]                | 300                                         | 300             | 200                  |                                 | ρ <sub>c</sub> = 619.3          |
| Maximal density<br>[kg/m <sup>3</sup> ]  | 2049                                        | 1823            | 2614                 |                                 |                                 |

# Prediction of the thermophysical properties and their verification

## ⇒ We are able to generate for the requested fluorinerts:

- $\Rightarrow$  Saturation tables
- $\Rightarrow$  Iso-property tables
- ⇒ Single property at any state point
- ⇒ Generate appropriate diagrams
- ⇒ Predict composition of the mixtures and theirs property

699

Three different compositions of the C3F8/C4F10 custom mixtures were prepared and tested:

#### Mass fractions:

| Target composition | Verified composition |
|--------------------|----------------------|
| (a) 0.3/0.7        | [0.30/0.70]          |
| (b) 0.5/0.5        | [0.44/0.56]          |
| (c) 0.7/0.3        | [0.80/0.20]          |

Target composition was verified by gas chromatography analysis and via measurement of the velocity of sound using the Sonar tube developed by G. Hallewell



### Performed measurements

- Temperature profiles along the SCT and Pixel structures were measured
- HTC were measured for all fluids&various technological parameters
  - Different geometries [I.D. or I.D<sub>h</sub>.]
  - Different heat fluxes
  - Different mass flows
  - Different sub-cooling
- Needle valve, ruby injectors and capillaries were tested in the evaporative circuits



### Summary results from HTC coefficient measurements



### Summary results from Genova stave measurements











### Conclusions

### • From the point of HTC values [averages]:

| Tube _ I.D. | =3.4 mm |       | HTC [W/m <sup>2</sup> K] |      |  |
|-------------|---------|-------|--------------------------|------|--|
| FLUID       | C3F8    | C4F10 | MIX_ 50/50               | CF3I |  |
| AVERAGE     | 4284    | 3047  | 2350                     | 3024 |  |
| RATIO       | 1.8     | 1.3   | 1.0                      | 1.3  |  |

• In the tube of ID = 3.4 mm

• In the Genova Stave Prototype

| Tube _ I.D. =3.4 mm |      |       | HTC [W/m <sup>2</sup> K] |      |  |
|---------------------|------|-------|--------------------------|------|--|
| FLUID               | C3F8 | C4F10 | MIX_ 50/50               | CF3I |  |
| AVERAGE             | 6759 | 4881  | 3232                     | 4892 |  |
| RATIO               | 2.1  | 1.5   | 1.0                      | 1.5  |  |

### • Other aspects are to be considered:

- Pressure limits for the structure
- Pressure losses within connecting pipes
- Temperature ranges [i.e. insulation matters etc.]
- Availability of the other components of the cooling circuit for certain fluid
- Compatibility with used materials
- Safety and environmental aspects
- •
- •
- Etc.

• HTC coefficient is not the only priority !!!

### **Compressor studies for fluorocarbon vapors.**

Dry scroll compressor Atlas Copco SF4-8-120
Main modifications









Setup for pumping speed measurement



- 14 -

### Pumping speed for the fundamental refrigerant vapors



### Performance variation for C<sub>3</sub>F<sub>8</sub> with frequency change



699



#### **Other characteristics**



### **Conclusions**

- Successful design changes and modification include:
  - Leak-tightness of the compressor box [Helium was used for the test]
  - Internal cooling loop implementation
  - Frequency regulator device implementation
  - Buffer tank modification
- Performance test have been done with following fluids:
  - Air [initial test]
  - Fluorinert vapors:
    - $C_4F_{10}$
    - $C_3F_8$

[with an average measured flat pumping speed of ~20 m<sup>3</sup>hr<sup>-1</sup> for both C<sub>4</sub>F<sub>10</sub> ( $P_{in} = 0.25$ ,  $P_{out} = 4$  bar abs) and C<sub>3</sub>F<sub>8</sub> ( $P_{in} = 1.4$ ,  $P_{out} = 8$  bar abs)].

• Scroll compressor is ready for an instalation into the main cooling system circuit and necessary workshop actions are under way.

CWG Meeting at CERN

